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Abstract

China’s economy is the second largest in the world and account for more than 30% of global
growth. Yet China’s role as a driver of global economic and financial fluctuations is mostly
uncharted. This paper quantifies China’s role by addressing two key issues. First, we construct
a measure of China’s credit impulse to isolate Chinese policy induced demand shocks as Chinese
authorities have a significant degree of control over the supply of credit to the economy. Second,
we estimate a measure of alternative GDP growth that better captures the volatility of underlying
Chinese economic activity as official GDP in recent years is seemingly overly smooth. The results
from our structural VAR show that since the Great Financial Crisis, China plays a quantitatively
important role in driving the global business and financial cycle. We find that a 1% of GDP
stimulus in China’s credit policies induces a 0.7% increase in its own GDP, a 1.2% increase in
annual world industrial production reflecting a boost from higher Chinese demand. We also find
that global credit outside of China increases by 0.4% driven by a rise in global risk appetite.
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1 Introduction

China’s economy is the second largest in the world and accounts for more than a third of global

growth. Its banking system, with $41 trillion in assets, is the largest in the world and is about

double the size of that in the United States. As such, it is becoming critical to understand China’s

role as a source of shocks to both the global business cycle and to the global financial cycle–the

global common movement of risky asset prices, capital flows, and leverage across borders–which, to

date, is largely focused on United States (Rey, 2013; Miranda-Agrippino and Rey, 2020).

However, researchers aiming to understand China’s role in the global economy are confronted

with two significant hurdles. The first is the the difficulty of identifying Chinese demand shocks.

As a major exporter, China is a recipient of shocks from, as well as a source of shocks to, the

rest of the world. Moreover, the extensive yet nebulous role of the state in China’s economy and

financial markets, together with the use of non-standard policy instruments, greatly complicates the

identification of policy changes that can be used to isolate Chinese demand shocks.

The second hurdle to an analysis of China’s role in the global economy is Chinese data. To

estimate the effect of China-induced policy shocks on the global business and financial cycle, one

needs to first isolate the effect on the Chinese economy. However, Chinese GDP in particular has

long been thought to be mismeasured (Rawski, 2001) and implausibly smooth (Nakamura et al.,

2016)—a problem that has become acute in recent years (Clark et al., 2018; Fernald et al., 2021).

Indeed, as we show in this paper, Chinese GDP growth in the past decade is smoother than that of

any country in recent history (including China’s own). Our paper seeks to address these problems

and provide estimates of China’s role in the global business and financial cycle.

We proceed in three steps. First, to isolate the effect of China-induced policy shocks on the

global economy, we take advantage of the fact that the Chinese authorities exert a significant degree

of control over the supply of credit to the economy. To that end, we construct a measure of the

Chinese credit impulse, which is an aggregate of different types of credit influenced by the Chinese

authorities, including bank loans, shadow credit, and local government bonds.

Second, to isolate the effects of Chinese demand shocks on the Chinese economy, we estimate

an alternative measure of China’s real GDP using a large set of indicators of economic activity

that are believed to be less subject to smoothing by the government, including property market

data, auto sales, reported exports to China from other countries, satellite nighttime lights data,

and pollution data (Clark et al., 2018; Chen et al., 2019; Morris and Zhang, 2019; Groen and
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Nattinger, 2020; Fernald et al., 2021). To construct an alternative GDP measure from these series,

we employ a dynamic factor model (DFM), which is able to flexibly handle series of different lengths

and frequencies—a particularly valuable property in the Chinese context—and has become an

increasingly important tool for nowcasting a wide set of macroeconomic variables.

Lastly, we quantify the effects of shocks to China’s credit impulse on global business and financial

activity. We estimate a Bayesian vector autoregression (VAR) model that accounts for economic

and financial developments to identify changes in the credit impulse due to government credit

policies. We then estimate the effects of those policy-induced credit shocks on Chinese growth

and its transmission to the rest of the world. This approach is preferred to directly estimating the

impact of Chinese GDP on global activity, as movements in Chinese GDP could be endogenous to

the global cycle.

We find that China’s credit policies since the Great Financial Crisis (GFC) have had sizable

effects on both global economic activity and global credit conditions. We estimate that a policy-

induced 1 percentage point of GDP increase in China’s credit impulse boosts its own economy 0.7

percent, proxied by an alternative measure of China’s real GDP. After one to two years, the credit

shock is estimated to induce a 1.3 percent rise in annual world industrial production excluding

China and a 1.9 percent decrease in commodity prices, and raises world trade excluding China

boosted by stronger Chinese demand.

Additionally, we find that China’s credit policies have a significant effect on the global financial

cycle—the co-movement of risky asset prices, capital flows, and leverage across borders(Miranda-

Agrippino and Rey, 2020). Even though China’s financial system is relatively closed to global

investors, its influence reverberates through the global financial system by affecting Chinese economic

developments and also global economic sentiment. Policy-induced expansionary credit shocks are

estimated to reduce aggregate risk aversion, associated with a lower implied volatility of the SP 500

index, which increases global asset prices and credit.

Finally, we find that including our alternative measure for Chinese GDP is important in capturing

the effect of China’s credit policies on its own economy and studying the transmission of China’s

economy to the rest of the world. The VAR results show that an unexpected increase in the credit

impulse generates a positive impact on Chinese GDP first and thus leads the subsequent movements

in the global variables. In contrast, when we estimate our VAR with China’s official GDP instead of

our alternative measure, policy induced shocks to China’s credit impulse do not significantly affect

domestic output. We interpret this result as evidence of China’s official GDP being seemingly overly
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smooth and, thereby, not capturing the cyclical movements. Therefore, this result underscores that

our alternative measure of GDP is a useful proxy for activity. In addition, we find that identifying

Chinese demand shocks using the credit impulse is another important factor to consider when

studying China’s contribution to the global cycle. Indeed, we find that a methodology where we use

a shock to China’s real GDP to study the spillovers to the rest of the world underestimates China’s

contribution to the global cycle. Specifically, we find limited effects on global industrial production

but almost no significant impact on the global financial cycle.

Our paper contributes to the literature in several important ways. We contribute to an emerging

literature that studies the global spillovers from China’s economy Ahmed et al. (2019); Dizioli et al.

(2016); Furceri et al. (2017); Gauvin and Rebillard (2018). To the best of our knowledge, this is the

first paper that quantifies the role of Chinese demand shocks, measured by a more comprehensive

Chinese credit measure, to the global business and financial cycle using an alternative growth

measure for China. Relative to previous studies that quantify China’s role in the global cycle,

we find that China’s importance might have been underestimated. Indeed, studies by Dizioli et

al. (2016) and Furceri et al. (2017) find that the spillovers from China’s economy to the global

economy are relatively limited and are mostly confined to China’s closest trading partners and

commodity exporters. Likewise, Gauvin and Rebillard (2018) find that a structural slowdown in

China would especially affect emerging market economies. In contrast, we find that China’s economy

has significant spillovers to global industrial production more generally. As such, we contribute to a

large literature that studies the role of trade on global business cycle co-movoments (Baxter and

Kouparitsas, 2005; Kose and Yi, 2001; Calderon et al., 2007; Liao and Santacreu, 2015). Specifically,

Johnson (2014); Duval et al. (2015); de Soyres and Gaillard (2019, 2020) highlight the importance

of trade in intermediate inputs as part of global value chains and its contribution to global GDP

co-movements. de Soyres and Gaillard (2019) find that GDP co-movement is significantly associated

with trade in intermediate inputs. Our results contribute to this literature in that we find that

China’s credit policies are estimated to be an important driver of global business activity though

higher Chinese demand and subsequently higher global trade outside of China.

We also contribute to a large literature that studies the driving forces behind global financial

cycles. Many studies have focused on the role of the United States, including Bruno and Shin

(2015b,a); Miranda-Agrippino and Rey (2020), which establishes the importance of U.S. monetary

policy as one of the main drivers of the global financial cycle. Similarly, recent work by Monnet

and Puy (2019) studies global cycles for a wide set of emerging and advanced countries since 1950
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and finds that business and financial cycles are generally driven by shocks that originate in the

United States. We view our paper as shedding more light on the importance of another major

economy, that is China, as its role still remains relatively unexplored. Our results indicate that

China’s credit policies since the GFC have been an important driver of the global financial cycle.

We show that expansionary shocks to China’s credit lead to a decline in aggregate risk aversion,

associated with a higher implied volatility of the SP 500 index, which depresses global asset prices

and credit. As such, our paper is most closely related to Miranda-Agrippino et al. (2020), which

studies the global footprint of China’s monetary policies using a monetary policy index based on

Jia and Xu (2019)’s estimated natural interest rate to proxy the policy stance of the People’s Bank

of China. However, given that monetary policy and fiscal policy in China are intertwined and

Chinese authorities view total domestic credit in the economy as an important policy objective, we

construct a more comprehensive measure to identify Chinese demand shocks. Moreover, in contrast

to Miranda-Agrippino et al. (2020), we find that China not only contributes significantly to the

global business cycle, we find notable spillovers to global financial conditions. As such, to the best of

our knowledge, this is the first paper that quantitatively shows China’s important role as a driving

force of the global financial cycle.

The remainder of the paper is organized as follows. Section 2 highlights several data issues that

arise in analyzing the relationship between Chinese and global growth. Section 3 describes the

estimation of the alternative growth series for China and the data series we use. Section 4 describes

the quantitative analysis. Sections 5 presents the results. In section 6, we perform robustness

analysis. Section 7 concludes.

2 Chinese Data Concerns

In this section, we highlight several key data issues in quantifying China’s role in driving the global

business and financial cycle.

2.1 China’s credit impulse

Identifying policy shocks in the Chinese context presents a number of challenges. First, China’s

unique institutional setup blurs the line between fiscal, monetary, and regulatory policies, all of

which are coordinated by the State Council, China’s highest executive body. Second, China’s policy

framework has evolved continuously as its economy has developed; as such, policy instruments have
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also changed, making it difficult to compare policy shocks over time. Third, at any given time,

Chinese authorities use a multiplicity of policy instruments to achieve their objectives, including

many instruments for which we have poor visibility. Monetary policy, for example, is not centered

around a key policy interest rate, but rather is executed by means of numerous instruments, including

differentiated bank reserve requirements, administratively set interest rates for bank loan and deposit

rates, short-term liquidity operations and rates on central bank lending facilities, open market

operations to influence short-term market interest rates, and murkier instruments such as “window

guidance” to banks on the amount of lending they may do. Similarly, fiscal policy since the Global

Financial Crisis (GFC) has relied heavily on the use of off-budget quasi-government entities. Thus,

it is difficult to assess the stance of policy based on any one policy instrument. Fourth, policy

communications are generally constrained due to the presence of many stakeholders in Chinese

policy decisions (Schipke et al, 2018), making it difficult to construct “news-based” measures that

have proved a particularly promising approach to identifying policy shocks in other contexts (e.g.,

Gertler and Karadi, 2005; Jarocinski and Karadi, 2019?).

Rather than focusing on shocks to specific policy instruments, the approach we take in this paper

is to focus on a key intermediate policy target—credit creation. Our approach takes advantage of

the fact that a primary tool of Chinese stabilization policy—encompassing monetary, fiscal, and

regulatory policies—is directing the flow and controlling the amount of credit in the economy. This

reliance on credit dates back to the mid-1980s, in the early years of China’s “reform and opening up,”

when the authorities switched from providing financing to state-owned enterprises (SOEs)—which

at that time comprised most of the economy—via direct fiscal appropriations to providing indirect

financing via bank loans (Chen and Zha, 2018). Credit supply was thus adjusted by tightening and

relaxing loan quotas on state banks. In the early years, monetary policy played a largely passive

role, as credit supply was largely determined by SOEs’ financing needs in the context of soft budget

constraints. Over time, as the inflationary consequences of this policy became apparent, monetary

policy played a more active role by controlling the aggregate amount of credit in the economy—an

aim of monetary policy that continues to this day (Chen and Zha, 2018).

Our preferred measure of the policy stance is the credit impulse, which measures the change in

new credit in relation to GDP. The credit impulse has been shown in other contexts to be a useful

measure of the impact of credit conditions on economic activity and is a closely watched metric of

the policy stance among China watchers. To construct a comprehensive measure of the Chinese

credit impulse, we aggregate different types of credit directly influenced by the Chinese authorities
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including bank loans, shadow credit, and local government bonds.

Although the People’s Bank of China (PBOC) releases a monthly data series for domestic

credit referred to as Total Social Financing (TSF), this is not a comprehensive set of all credit

measures used by Chinese officials. In particular, in recent years, the Chinese authorities have relied

heavily on local government bond issuance to invest in infrastructure and other projects. The TSF

measure only includes a subset of those local government bonds, that is, special local government

bonds.1 Therefore, we first augment the TSF measure from the PBOC to include local government

bonds. In addition, the TSF measure only dates back to 2002. We augment this TSF series by

using data on renminibi denominated loans to track domestic credit in China back to 1990.2 All

told, we define aggregate credit as the PBOC’s Total Social Financing less equity financing, plus

local government bonds corrected for double counting of local government special bonds. This

credit measure aggregates different types of credit including bank loans, shadow credit, and local

government bonds.

The credit impulse is defined by the change in the flow of new credit in the past 12 months

relative to those the year prior as a percent of nominal GDP. More formally, the credit impulse is

measured at the monthly frequency and is denoted by

CIm =

∑11
n=0Dm−n −

∑23
n=12Dm−n∑23

n=12 Ym−n
, (1)

where m denotes the month, Dm is the level of additional monthly credit in the Chinese economy

in month m, and Ym is nominal official Chinese GDP. Note that Chinese GDP is only released at

the quarterly frequency. Therefore, to impute monthly GDP, we divide total quarterly GDP evenly

over the three corresponding months.

Figure 1 shows China’s credit impulse together with its share in the global economy. It highlights

that the Chinese authorities have actively used credit stimulus to stimulate and cool the economy

since a long period. However, with China’s rising share in the global economy, over the past several

years, the quantitative importance of China’s credit policies has risen notably.

Finally, one important thing to note is that accounting for the usage of local government bonds

in China is very important to correctly measure China’s credit impulse. To underscore this point,

1In 2019, the PBOC changed its definition of Total Social Financing to include special local government bonds.
2In the 1990s renminbi denominated loans accounted for the bulk of domestic credit in China. The usage of

local government bond issuance became a quantitatively important source of credit after the GFC. Similarly, the
importance of shadow banking became quantitatively important after the GFC.

6



figure A.4 plots the credit impulse if we had not augmented the Chinese TSF series with the local

government bonds. As figure A.4 highlights, Chinese authorities responded with massive stimulus

after the 2014-2015 ‘China scare episode’ but largely in part driven by local government bond

issuance. According the TSF data, the stimulus period is identified incorrectly as taking hold only

at the end of 2016.

Figure 1: China’s credit impulse (% China’s GDP)

Note: The impulse is calculated as the 12-month percent change in the 12-month rolling sum of the flow
of new credit as a percent of 12-month lagged nominal GDP. Monthly GDP is computed as one third of
quarterly nominal GDP for the corresponding quarter.

Figure 2: China’s credit impulse (% Global GDP)

Note: The impulse is calculated as the 12-month percent change in the 12-month rolling sum of the flow of
new credit as a percent of 12-month lagged global nominal GDP. Monthly nominal GDP is computed as one
twelfth of annual nominal GDP.
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2.2 Chinese real GDP

The second issue is the quality of China’s GDP data. While this has been a longstanding concern,

one key issue that has become especially acute over the past decade is that Chinese real GDP is

seemingly overly smooth, as highlighted by Fernald et al. (2021), Clark et al. (2018), and Groen

and Nattinger (2020). To underscore this point, figure 3 plots quarterly Chinese real GDP growth

and its five-year moving standard deviation over the past decades. As figure 3 shows, the volatility

of China’s GDP growth has fallen markedly in recent years.

How does this volatility compare worldwide? Figure 4 plots the volatility of Chinese real GDP

growth to all countries over time in history. It highlights that China’s GDP volatility’s is among

the smoothest compared to all other countries. Additionally, in more recent years, that volatility is

the lowest in China’s own history and in all countries’ history, suggesting that China’s GDP might

be overly smooth, especially in recent years.

Figure 3: China’s official real GDP growth

Note: Figure 3 plots China’s official real GDP growth in 4-quarter changes its 5-year rolling standard
deviation.

All told, using China’s official GDP growth to study its role in the global cycle might mitigate

or even mask the estimated transmission of a Chinese shock to the rest of the world. To address

this concern regarding China’s GDP, we estimate an alternative measure of China’s real GDP using

a dynamic factor model (DFM) as described in section 3.
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Figure 4: China’s GDP volatility compared to other countries

Note: Figure 4 plots the historical country rank of countries’ 5-year rolling standard deviation of real GDP
growth in 4-quarter changes across 101 countries for which at least 5 years of quarterly data is available.
Values greater than 50 are omitted.

3 Estimation

3.1 Dynamic Factor Model

We employ a dynamic factor model (DFM, henceforth) to estimate the underlying path of China’s

economy. DFMs are a useful tool for monitoring macroeconomic conditions in real time (Giannone

et al., 2008), being the ideal machinery candidate to summarize a large set of non-synchronous,

disconnected data. The idea here is that Chinese observed variables, both monthly (ym,t) and

quarterly (yq,t), are driven by a smaller number of latent unobserved factors (ft). Specific features

of each series are captured by idiosyncratic errors (em,t and eq,t). Observable variables are linked

to the factors by two set of observation equations, defined as

 ym,t

yq,t

 =

 Λm 0 0 0 0

Λq 2Λq 3Λq 2Λq Λq




ft

ft−1

ft−2

ft−3

ft−4


+

 em,t

eq,t

 , (2)
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while factors are defined by the transition equations

ft = A1ft−1 + ...+ Apft−p + ut. (3)

ym,t and yq,t are vectors of nm monthly and nq quarterly data, respectively, while ft is a vector

of r latent factors. Monthly and quarterly variables are standardized stationary, and the common

factors have mean zero and unit variance.

The matrices Λm and Λq summarize the factor loadings of the monthly and quarterly variables,

em,t and eq,t are vectors of idiosyncratic components uncorrelated with ft at all leads and lags.

We link the monthly growth rates to its quarterly counterpart using the aggregation procedure

proposed by Mariano and Murasawa (2003). The matrices Λm and Λq can be full, and so all

monthly and quarterly variables load on all r factors. Another option is to restrict specific loadings

of each matrix to zero. The advantage of such a procedure is to bring economic intuition to the

estimated factor. One could choose, for example, to load variables only linked to a specific industry

(like manufacturing), and then the factor would have an industry-specific interpretation.

The matrices A1 to Ap bring a VAR-like structure to the latent factors. If only one factor is

selected, then it follows an AR(p) process. If r > 1 factors are selected, the matrices A1 to Ap can

be unrestricted and these factors interact in a VAR(p) structure, or can be restricted to a diagonal

and the factors will be estimated individually as AR(p) processes.

As a benchmark, we define here our measure of alternative Chinese growth as a DFM projection

of the variables described in the next Section, with 2 factors, with p = 1 lag, and each factor

estimated as an AR(1) process. We estimate alternative structures with less factors, restricted

manufacturing and/or services factors, and VAR structures, and the results presented here are

robust to these variations.

3.2 Data

In order to estimate the dynamic factor model (DFM) as described in the previous section, we need

data series that reflect underlying economic activity in China. Before we describe which data series

we use in our analysis, we first discuss several issues regarding data selection.

The first issue is that certain data series are highly correlated with official GDP growth. Therefore,

these series are likely also smoothed. Particularly, we find that industrial production and retail sales

are highly correlated with official GDP and if we estimate a DFM with those factors, our alternative
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GDP series resembles the official GDP growth series very closely. In addition, Chen et al. (2019)

also find issues with industrial production data. Therefore, in a robustness analysis, we will exclude

those series.

The second issue is that China’s economy has undergone a structural structural shift from an

investment-led and export dependent country to a more consumption based country. Consequently,

to reflect underlying growth, our estimation needs data series that reflect those parts of the economy.

We do so by including series such as semiconductor production, mobile phone production, auto

sales, and property market starts. As highlighted earlier, a number of these series have relatively

short time spans compared to more manufacturing based series. Therefore, the benefit of the DFM

estimation is that this method allows for series with different time horizons.

Therefore, we will use a combination of: (1) traditional Chinese series, (2) Chinese series

believed to be ‘less smoothed’ used in other papers, (3) Chinese series, believed to be ‘less smoothed’

considered in this paper to better capture consumption in China, and (4) series from non-Chinese

agencies. The series we consider include:

1. Traditional Chinese series: industrial production, retail sales, total fixed asset investment,

official manufacturing PMI3;

2. Chinese series believed to be less subject to smoothing used in other papers:

exports, railway freight, electricity consumption, electricity production, cement production,

consumer expectation index, industrial profits, Caixin manufacturing PMI, floor space sold,

floor space started, iron ore imports, steel production;

3. Chinese series, believed to be less subject to smoothing considered in this paper:

auto sales, fixed asset investment for the manufacturing sector, fixed asset investment for

the services sector, excavator sales, household items production, copper import volume,

microcomputer production, semiconductor production;

4. Series from non-Chinese agencies: Chinese imports (computed by foreign reported ex-

ports), Alibaba sales, Lenovo sales, Tencent sales, nitrogen dioxide (NO2), satellite nightlights.

3Even though we believe some of these traditional Chinese series exhibit similar smoothness properties as official
real GDP, we include them in the set of possible variables to let the DFM determine which series to place a higher
weight on. As such, we take a more agnostic approach as to which series to include or not.
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3.3 Alternative growth

Our preferred model uses a wide set of all previously described series.4 In section 6 we consider

additional specifications. To estimate our alternative growth measure we do the following steps:5

1. We take series in 12-month growth rates;6

2. Estimate the DFM from January 2000 through December 2019 and extract one global factor;

3. Convert the global factor movements into GDP movements:

• First, regress the global factor on (de-trended) official real GDP growth in 4-quarter

percent changes.7

• Second, use this elasticity to map global factor movements into GDP growth in 4-quarter

percent changes.

• Finally, add the trend of official real GDP growth back in. The underlying assumption is

that, on average, trend growth from China’s official real GDP correctly represents that

of the Chinese economy.

Figure 5 plots our estimated alternative Chinese growth series and compare to the officially

reported growth. There are several takeaways. The first is that our estimated alternative growth

captures the overall path of official growth relatively well. Specifically, the model matches well the

GFC movements and the subsequent downturn following the GFC.

The second takeaway is that our estimated alternative growth is more volatile than official

growth in recent years. More specifically, we find that the 2015 slowdown was more pronounced

than officially reported. Specifically, we find that Chinese growth in 2015 slowed to 6%, which is a

full percentage point lower than officially reported. In addition, the post-2015 recovery was stronger

than officially reported. Our alternative growth estimate shows that Chinese growth rose to near

7.5 percent, whereas official GDP growth shows a growth rate of about 6.8 percent. Finally, the

slowdown following the Chinese authorities’ deleveraging campaign has caused growth to slow more

rapidly than officially reported and dipped below official growth in the second half of 2018.

4See table A.1 in the appendix for the exact model specifications.
5We perform numerous robustness tests that relaxes some of the underlying assumptions in these steps.
6The exceptions include PMI series and consumer confidence index, which are used in levels. We choose to estimate

the DFM in 12-month changes to mitigate measurement issues regarding the underlying Chinese data. Indeed, the
majority of China’s data series are reported in 12-month or year-to-date 12-month percent changes as opposed to
typical level series.

7Trend and cycle of GDP extracted using the Hodrick–Prescott filter.
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Figure 5: Alternative versus Official Growth

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Years

5

6

7

8

9

10

11

12

13

14

15

O
ffi

ci
al

 G
ro

w
th

 (
%

)

5

6

7

8

9

10

11

12

13

14

15

A
lte

rn
at

iv
e 

G
ro

w
th

 (
%

)

Official GDP
Alternative Growth est. from 2000

Note: Figure 5 plot China’s official real GDP growth in 4-quarter changes and our preferred alternative
Chinese GDP growth in 12-month changes.

If we compare our alternative measure to the credit impulse, the impact of credit policies is

more apparent as highlighted in figure 6. This is particularly striking because we have not included

any credit measures in our DFM estimation such as household loans or banks loans. Even so, the

credit impulse appears to lead our alternative growth indicator. This result motivates our analysis

of how much China drives the global cycle as described in the next section.

3.4 Monthly growth estimates and alternative GDP level

In the previous section, we constructed our preferred alternative measure for monthly Chinese

growth in 12-month changes. But, in order to estimate the VAR, we need to convert these growth

rates into GDP levels. However, there is no GDP level series that is uniquely identified from these

12-month growth rates. Moreover, its estimation is complex due to the non-linearity implied by

the 12-month compounding of the unobserved monthly series. In this subsection, we propose a

method to extract underlying month-to-month growth rates, and thereafter construct an alternative

measure for the level of Chinese GDP

Our method is based on the Mariano and Murasawa (2003) quarterly aggregation, adapted to the

growth rate of one quarter over the same quarter of the previous year. The procedure approximates

the geometric mean of the monthly growth rates to an arithmetic mean, in order to make the

estimation linear. Following the same notation from Mariano and Murasawa (2003), let Yt represent
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Figure 6: Alternative Growth and the Credit Impulse
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Note: Figure 6 plot China’s credit impulse and our preferred alternative Chinese GDP growth in 12-month
changes.

a quarterly indicator observed every third period, such as the (observed) quarterly GDP level, and

Y ∗t a latent monthly indicator, such as the monthly (unobserved) GDP level. Yt and Y ∗t relates as

log Yt =
1

3
(log Y ∗t + log Y ∗t−1 + log Y ∗t−2), (4)

where Yt is the geometric mean of Y ∗t , Y ∗1 , and Y ∗t−2. Taking the 12-period differences we can

reconstruct the equivalent of a quarter over the same quarter of the previous year, as in

log Yt − log Yt−12 =
1

3
(log Y ∗t − log Y ∗t−12) +

1

3
(log Y ∗t−1 − Y ∗t−13) +

1

3
(log Y ∗t−2 − Y ∗t−14). (5)

Adding and subtracting lagged values of log Y ∗t leads to

log Yt − log Yt−12 = ...

1

3
(log Y ∗t − log Y ∗t−1 + log Y ∗t−1 − log Y ∗t−2 + log Y ∗t−2 − ...+ log Y ∗t−11 − log Y ∗t−12) + ...

...+
1

3
(log Y ∗t−1 − log Y ∗t−2 + log Y ∗t−2 − log Y ∗t−3 + log Y ∗t−3 − ...+ log Y ∗t−12 − log Y ∗t−13) + ...

...+
1

3
(log Y ∗t−2 − log Y ∗t−3 + log Y ∗t−3 − log Y ∗t−4 + log Y ∗t−4 − ...+ log Y ∗t−13 − log Y ∗t−14).

(6)

Defining yt = log Yt − log Yt−12 = ∆12 log Yt as the growth rate of the quarter over the over the
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same quarter of the previous year, observed every three months, and y∗t = log Y ∗t −log Y ∗t−1 = ∆ log Y ∗t

the monthly growth rate, never observed, the previous equation can be written as

yt =
1

3
(y∗t + ...+ y∗t−11) +

1

3
(y∗t−1 + ...+ y∗t−12) +

1

3
(y∗t−2 + ...+ y∗t−13), (7)

or simply

y1,t =
1

3
y∗t +

2

3
y∗t−1 + y∗t−2 + ...+ y∗t−11 +

2

3
y∗t−12 +

1

3
y∗t−13. (8)

Equation 8 represents a linear approximation that connects the observed quarter over the over

the same quarter of the previous year growth rate to the unobserved monthly growth rate. This

relation can be conveniently estimated as a state-space model described by



yt

y∗t

y∗t−1

y∗t−2

...

y∗t−11

y∗t−12


=



0

c0

0

0

...

0

0


+



1/3 2/3 1 ... 1 2/3 1/3

0 c1 0 ... 0 0 0

0 1 0 ... 0 0 0

0 0 1 ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... 0 1 0

0 0 0 ... 0 0 1





y∗t

y∗t−1

y∗t−2

y∗t−3

...

y∗t−12

y∗t−13


+



1/3 0 0 ... 0 0 0

1 0 0 ... 0 0 0

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0





ut

0

0

0

...

0

0


,

(9)

where the monthly growth rate y∗t follows an AR(1) with ut ∼ N(0, 1). Since the model is linear

in the unobserved monthly growth rate, it is possible to apply the Kalman filter to evaluate the

likelihood function and estimate the parameters through maximum likelihood.8

We construct our alternative GDP monthly growth rate by estimating the state-space model 9

taking as a signal yt, our monthly year-over-year alternative growth rate described in Section 3.3

and exhibited in Figure 5.

The approximation of the geometric mean through an arithmetic mean leads to almost negligible

errors if monthly changes are small (Camacho and Perez-Quiros, 2010). However, two issues

arise with our implementation. First, an approximation of 12-month growth rates exacerbates

the approximation error as it accumulates 12 monthly rates instead of only three in the case of

8See Stock and Watson (1991) and Mariano and Murasawa (2003) for details on the estimation procedure.

15



quarterly growth rates. Second, China’s annual GDP growth ranges from six to 12 percent in recent

years, which implies that monthly changes are not small. We deal with this issue by adjusting the

estimated log-difference monthly GDP by a factor that best approximates its arithmetic mean to

the geometric mean. In practice, we construct the monthly GDP level as

Y ∗t = Y ∗t−1x
y∗t /100, (10)

where x is the number that minimizes the error9

min
x

T∑
t=1

(
yt −

(
(Y ∗t +Y ∗t−1+Y ∗t−2)

(Y ∗t−12+Y ∗t−13+Y ∗t−14)
− 1
)
∗ 100

)2
T

, (11)

and the adjusted monthly growth rate ỹ∗t as

ỹ∗t =

(
Y ∗t
Y ∗t−1

− 1

)
∗ 100. (12)

Figure 7: Monthly GDP growth rate

Note: Figure 7 plots the monthly growth rates that are estimated in a state-space model taking signal from
our alternative 12-month growth rate, denoted by y∗t , estimated using a dynamic factor model, and the
adjusted monthly growth rates, denoted by ỹ∗t , as computed by equation 12.

4 Quantitative Analysis

To quantify the economic effects of China’s credit policies on the global cycle, we estimate a monthly

Bayesian VAR in levels that includes variables capturing the overall state of global business activity,

global financial conditions, and China’s economic activity. We then evaluate the transmission effects

9We estimate x as 2.396, which is slightly smaller than the Euler’s number.
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of unexpected changes in Chinese credit. The reason why we opt for a shock to China’s credit

impulse is that the Chinese authorities exert a significant degree of direct control over the supply of

credit to the economy. As such, this allows us to identify demand shocks that originate from China.

Moreover, this approach is preferred to directly estimating the impact of Chinese GDP on global

activity, as movements in Chinese GDP could be endogenous to the global cycle.

We estimate a monthly VAR with 12 lags and an intercept term:

yt = B1yt−1 + ...+ Bpyt−p + εt. (13)

Table 1 describes the variables we include in our different VAR specifications. We first estimate

a narrow VAR with only four variables (model (1)) to study China’s contribution to the global

business cycle, as measured by the global economic conditions index constructed by Baumeister et

al. (2021), and to the global financial cycle, constructed by Miranda-Agrippino and Rey (2020).

Then we estimate our benchmark VAR (model (2)) to quantify the spillovers of China’s credit

policies and study the channels of transmission. This benchmark VAR (model (2)) includes twelve

endogenous variables: the VIX (V IX), which is an index of the implied volatility in S&P500

stock index option prices from the Chicago Board Options Exchange (CBOE), the S&P500 stock

market index. a commodity price index, global exports excluding Chinese exports, global industrial

production excluding China, the broad U.S. dollar, the 2-year U.S. Treasury yield, global credit flows

excluding China, global inflows into banks, and global inflows into non-banks. With the exception

of the 2-year U.S. Treasury yield and the credit impulse, all variables are level series at the monthly

frequency.

The VAR models are estimated with 12 lags and an intercept term for three subsamples: from

January 2000 to April 2019, from January 2009 to April 2019, and from January 2012 to April

2019.10 We employ a Bayesian VAR in order to estimate the large number of coefficients and we

take advantage of Minnesota priors (Litterman, 1986; Bańbura et al., 2010). Confidence bands for

the impulse response graphs are computed using 1,000 draws from the posterior distribution.

The variables in all estimated VARs are summarized in table 1. We identify a credit impulse

shock through a recursive Cholesky decomposition in a block exogeneity structure, where the credit

impulse is ordered first after all the indicators, including China’s alternative GDP. This structure

assumes that an exogenous credit impulse shock can affect the rest of the world and China only

10Note that end period constrained by the measure for the global financial cycle as constructed by Miranda-Agrippino
and Rey (2020), which is updated through April 2019.
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Table 1: VAR Variables

Variable name Source Model
(1) (2) (3) (4)

China’s credit impulse Own calculation x x x
Alternative Chinese real GDP Own calculation x x
Global financial cycle indicator Miranda-Agrippino and Rey (2020) x
Global economic conditions index Baumeister et al. (2021) x
VIX Haver x x x
S&P500 index Haver x x x
Broad U.S. dollar BIS* x x x
2-year U.S. Treasury yield FRB x x x
Global credit flows ex. China BIS*, Own calculation x x x
Global inflows to banks BIS* x x x
Global inflows to non-banks BIS* x x x
Commodity price index Haver x x x
Global Trade ex. China Haver, Own calculation x x x
Global IP ex. China Haver, Own calculation x x x
Global GDP ex. China Haver, Own calculation x x x
Official Chinese real GDP NBS* x x
Figures 2012-2019 8 9 11 12

Note: The top panel in table 1 lists the variables included in our different VAR model specifications. The
NBS is the National Bureau of Statistics in China. * denotes monthly interpolation of the quarterly original
variables using a piecewise cubic interpolation. The bottom panel in table 1 describes the corresponding
figures of each model estimation and for different time spans.

with a one-month lag.

Formally, taking a vector of endogenous variables yt, the moving average representation (in

levels) is written as

yt = B(L)ut. (14)

If there is a linear mapping of the innovations (ut) and the structural shocks (st), this moving

average representation can be rewritten as

ut = A0st (15)

and

yt = C(L)st, (16)

where C(L) = B(L)A0, st = A−10 ut, and A0 is the impact matrix that makes A0A
′
0 = Σ (variance-

covariance matrix of innovations). We take A0 as the lower triangular Cholesky factor of the

covariance matrix of reduced-form innovations.
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5 Results

In this section, we first present the results of a narrow model to capture China’s contribution to

the global business and financial cycle as measured by aggregated factors. Then, we study the

mechanisms of how China’s credit policies spill over to the rest of the world. Finally, we highlight

the importance of using China’s credit impulse to identify policy induced Chinese demand shocks

and the usage of our alternative GDP measure for China.

5.1 Narrow Model

First, we analyze the effects of a Chinese credit impulse shock on China’s economy and its transmission

to aggregate global business activity and global financial conditions. As highlighted in the previous

section, we estimate a four-variable VAR (model (1) in table 1). We focus on the period after

the Global Financial Crisis–from January 2012 to April 2019–when China’s footprint in the global

economy is largest. The reason why we first estimate this narrow model is to focus on business and

financial cycle aggregates, thereby reducing the number of parameters estimated, especially given

the relatively short time horizon.

Figure 8 presents the results and we also include the 16th and 84th percentiles of the impulse

response results for the draws from the posterior distribution. We find that a one percentage point

increase in China’s credit impulse leads to a significant rise in Chinese GDP of about 0.7%. The

positive effects are strongest around 16 months.

Figure 8: Economic responses to a 1% (of GDP) credit impulse shock (2012-2019)

Note: The lines in figure 8 are the estimated impulse responses to a 1 percent of Chinese GDP shock to
China’s credit impulse and correspond to the posterior median estimates. The unit of the vertical axis is the
percentage deviation from the situation without a shock. The responses originate from a VAR estimated from
January 2012 to December 2019. The grey shaded area represents the one standard deviation confidence
bands of the credit impulse shock obtained with 1,000 draws from the posterior distribution. See table 1 for
the VAR specification.
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In addition, figure 8 highlights that China’s expansive credit policies positively and significantly

affect the global economic conditions index as constructed by Baumeister et al. (2021). Interestingly,

we find that the upturn in our alternative Chinese GDP measure leads the significant impact on the

global economic conditions index, pointing to the transmission of higher Chinese demand to the

rest of the world.

Next, we consider the effects of China’s credit policies on global financial conditions. Figure 8

highlights that a positive shock to China’s credit impulse notably eases global financial conditions.

The impulse response functions show a positive and significant impact on the global financial cycle

indicator constructed by Miranda-Agrippino and Rey (2020). The effects are strongest after 18

months and therefore, lag the positive effects on Chinese GDP, which again points to the transmission

from China’s economy to the rest of the world and not vice versa.

All told, the results from our narrow model show that China’s credit policies since the GFC

have a significant impact on the global business and financial cycle. Moreover, we find evidence

that the transmission occurs from China’s economy to the rest of world. Note, however, that these

are aggregate measures. In the next section, we estimate a VAR with disaggregated data. This

serves two purposes. The first is to quantify China’s contribution to economic and financial activity.

Second, it allows us to study in detail the mechanisms of how China’s credit policies spill over to

the rest of the world.

5.2 Benchmark Model

Our benchmark VAR includes 12 endogenous variables as described in table 1 (model (2)) and is

estimated from January 2012 to April 2019. We present the impulse responses after an unexpected,

one standard deviation increase in the 12-month Chinese credit impulse. We also include the 16th

and 84th percentiles of the impulse response results for the draws from the posterior. Figure 9

presents the impulse responses. By construction, all variables do not react on impact.

First, we consider the effects of China’s expansive credit policies on on the Chinese economy

using our alternative growth measure and global business activity. We find that a positive shock to

China’s credit impulse leads to a positive and significant increase in Chinese GDP in the medium

run. The impulse response functions show that the strongest effects on China’s GDP occur after 16

months with positive effects for just under 24 months. Specifically, we find that a positive shock

to China’s credit policies of one percentage point of Chinese GDP, leads to a 0.7% rise in China’s

alternative GDP measure. This result highlights that China’s credit policies constitute an important
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driver of fluctuations in Chinese GDP.

Next, we consider the effects on real economic activity outside of China. We find that China’s

expansive credit policies lead to an increase in global trade excluding China. Figure 9 shows that

global trade (excluding China) increases significantly in the medium run, but with a lag compared to

China’s economic activity. Specifically, we estimate that a positive shock to China’s credit policies of

one percentage point of Chinese GDP–about $149 billion–induces an increase in global trade outside

of China of about 1%, which points to quantitative strong Chinese demand spillovers. Moreover, we

find that stronger Chinese demand leads to an increase in commodity prices. We find that commodity

increase 1.9% after a shock to China’s credit of one percentage point of Chinese GDP, peaking

around 16 months after the shock. This result is complementary to Fernández et al. (2020), in that

we formally identify China as an important driver of commodity price movements.11 In addition to

an increase in commodity prices, 9 shows that global industrial production (excluding China) also

increases significantly in the medium run, and, again, with a lag compared to China’s economic

activity. Specifically, we estimate that a positive shock to China’s credit policies of one percentage

point of Chinese GDP induces an increase in global production of about 1.2%, which amounts to

around $20 billion. Moreover, our estimated measure for Chinese growth peaks after around 16

months, global industrial production outside of China peaks only after around 20 months. This

lagged response indicates that the positive effects of China’s credit impulse are transmitted to the

rest of the world, driven by a boost to global manufacturing. The delayed effect also indicates that

the initial transmission direction is from the Chinese economy–through higher Chinese demand–to

the rest of the world, and not the reverse where increased global demand boosts Chinese activity.

After studying the effects of China’s expansive credit policies on business activity, we now

consider the effects on global financial conditions. Figure 9 highlights that China’s expansive credit

policies lead to an increase in global credit outside of China. Moreover, we find a positive and

significant effects on global inflows into banks. The effects are strongest after about 18 months and

therefore, lag the positive effects on Chinese GDP, which again points to the transmission from

China’s economy to the rest of the world and not vice versa. This resulting might be somewhat

surprising given that China’s financial system is still relatively closed to global investors. But what

the impulse response functions in figure 9 also highlight is that a positive shock to China’s credit

impulse leads to an increase in global investor sentiment. Indeed, we find a significant decline the

11Fernández et al. (2020) show that world shocks that affect commodity prices and the world interest rate explain
more than half of the variance of output growth on average across countries.
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Figure 9: Economic responses to a 1% (of GDP) credit impulse shock (2012-2019)

Note: The lines in figure 9 are the estimated impulse responses to a 1 percent of Chinese GDP shock to
China’s credit impulse and correspond to the posterior median estimates. The unit of the vertical axis is the
percentage deviation from the situation without a shock. The responses originate from a VAR estimated from
January 2012 to December 2019. The grey shaded area represents the one standard deviation confidence
bands of the credit impulse shock obtained with 1,000 draws from the posterior distribution. See table 1 for
the VAR specification.

VIX and a depreciation of the broad real dollar, consistent with lower global risk aversion. Similarly,

we find strong and significant positive effects on the S&P500 stock market index, pointing to an

increase in global sentiment. These sentiment effects in turn reverberate into the financial system as

we find positive and notable spillovers to the global credit markets. To the best of our knowledge,

this is the first paper that formally shows China’s notable contribution to the global financial cycle.

All told, we find that China’s economy does not only has a significant contribution to the global

business cycle but we find strong evidence that China’s credit policies since the GFC have been an
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important driver of the global financial cycle.

5.3 The role of China and the U.S. in the global financial cycle

How do these effects compare to the role of the Unites States in driving the global financial cycle?

While a direct comparison is extremely difficult given the special nature of China’s credit policies,

we compare our quantitative effects to the global financial effects from a 25 basis points decrease in

the federal funds rate using the the methodology from Miranda-Agrippino and Rey (2020). Figure

10 shows that a 25 basis points decrease in the federal funds rate has significant positive spillovers

to the global financial cycle as global domestic credit rises notably. In comparison to figure 9, we

find that the effects of a credit impulse shock of one percentage point of Chinese GDP leads to

positive spillovers to global domestic credit about the size of one third of a 25 basis points easing of

U.S. monetary policy, which is significant.

In addition, we find that the channels of financial spillovers from China’s credit policies are

somewhat different from those transmission channels in the United States. Indeed, as documented in

Miranda-Agrippino et al. (2020), U.S. monetary expansions are followed by a significant leveraging

increase of global financial intermediaries, a decline in aggregate risk aversion, an expansion in

global asset prices and in global credit, a narrowing of corporate bond spreads, and a rise in gross

capital flows. In China, however, we find that financial spillovers reverberate though the global

financial system predominantly through sentiment effects. This decline in aggregate risk aversion in

turn leads, which leads to expansion in global asset prices and in global credit.

5.4 Importance of China’s alternative GDP

Next, we assess the importance of using China’s alternative GDP in the VAR estimation. To

that end, we estimate the same VAR as our baseline but include real official GDP instead of our

alternative GDP measure. Given that China’s official real GDP is released at the quarterly frequency,

we first transform China’s official real GDP to a monthly level using a monthly interpolation of the

quarterly series. In the robustness section, we use monthly China’s industrial production, which

also exhibits this smoothness property in recent years.

Figure 11 presents the impulse response functions of an unexpected one standard deviation

shock to China’s credit impulse. What the result show is the China’s expansionary credit policies

do not have a significant impact on Chinese GDP, which is counter intuitive. In contrast, we do still

find a positive and significant effect on global business activity. Indeed, global industrial production
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Figure 10: Country comparison of contribution to the global financial cycle

(a) 1% (of GDP) Chinese credit impulse shock

(b) 25 basis points U.S. monetary policy shock (Miranda-Agrippino and Rey, 2020)

Note: Panels (a) and (b) in figure 10 compare the effects of a 1 percent of Chinese GDP shock to China’s
credit impulse to those from a 25 basis points decrease in the federal funds rate using the the methodology
from Miranda-Agrippino and Rey (2020), respectively. The lines correspond to the posterior median estimates.
The unit of the vertical axis is the percentage deviation from the situation without a shock. The responses
originate from a VAR estimated from January 2012 to October 2019. The grey shaded area represents the
one standard deviation confidence bands of the credit impulse shock obtained with 1,000 draws from the
posterior distribution.

excluding China increases in the medium run with the largest positive effects after 18 months.

Similarly, we find a significant positive effect on commodity prices after 16 months.

Moreover, we also find that China’s credit policies have a notable effect on the global financial

cycle with a positive effect on global inflows into banks and global domestic credit.

All told, we find that our baseline VAR estimation with China’s official real GDP masks the

transmission from Chinese demand shocks, as proxied by the credit impulse, to the rest of the world.

Indeed, while we still find significant spillovers to the global business and financial cycle, we find

no effect of China’s expansionary credit policies on China’s economy. This result underscores the

issue of using China’s official real GDP in estimating the transmission to the global cycle as it has

become overly smooth in recent years.
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Figure 11: Economic responses to a credit impulse shock with official Chinese real GDP (2012-2019)

Note: The lines in figure 11 are the estimated impulse responses to 1 percent of GDP shock to China’s credit
impulse and correspond to the posterior median estimates. The unit of the vertical axis is the percentage
deviation from the situation without a shock. The responses originate from a VAR estimated from January
2012 to December 2019. The grey shaded area represents the one standard deviation confidence bands of the
credit impulse shock obtained with 1,000 draws from the posterior distribution.

5.5 Importance of China’s credit impulse

Next, we assess the importance of identifying Chinese demand shocks through our constructed credit

impulse for China. As highlighted earlier, previous research focused on using shocks to Chinese

real GDP to study the spillovers from China’s economy to the rest of the world. However, using

shocks to Chinese real GDP can confound Chinese demand and supply shocks. Therefore, to assess

the importance of using China’s credit impulse to identify Chinese demand shocks, we compare
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our results to a VAR model without China’s credit impulse and our alternative real GDP growth

measure for China. Specifically, we estimate a VAR with all the same global variables as in ?? but

we include China’s official real GDP and assess the spillovers of a shock to China’s GDP to the

rest of the world. Similar to our baseline approach, we assume that all variables can react with a

one-month lag.

Figure 12 presents the impulse response functions. We find that an unexpected one standard

deviation shock to China’s official real GDP positively and significantly increases global industrial

production excluding China with the strongest effects reached after 12 months. However, we no

longer find an effect on commodity prices. In addition, we find that a shock to China’s real GDP has

no significant effect on the global financial cycle indicators. We do find a small significant impact

on global inflows into banks but relatively short-lived of less than 6 months. Finally, we find no

significant impact on global risk aversion as proxied by the real broad U.S. dollar. Altogether, we

find that the Chinese economy has limited spillovers to the global cycle when using direct shocks to

Chinese official real GDP.

To summarize, our results highlights that (1) identifying shocks that originate from China using

the Chinese credit impulse and (2) using an alternative GDP measure for China’s economy are both

crucial to quantify the contribution of China’s economy to the global business and financial cycle.

We find that without addressing these two key issues, the spillovers from China to the rest of the

world are mostly confined to real activity, albeit limited, with a very limited contribution to the

global financial cycle. As such, China’s contribution to the global cycle is hidden.
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Figure 12: Economic responses to China’s official real GDP shock (2012-2019)

Note: The lines in figure 12 are the estimated impulse responses to a one standard deviation shock to China’s
real official GDP and correspond to the posterior median estimates. The unit of the vertical axis is the
percentage deviation from the situation without a shock. The responses originate from a VAR estimated from
January 2012 to December 2019. The grey shaded area represents the one standard deviation confidence
bands of the credit impulse shock obtained with 1,000 draws from the posterior distribution. See table 1 for
the VAR specification.

6 Robustness

We perform several robustness exercises. We first explore how sensitive our main results are to

different model specifications. Next, we explore different VAR specifications.
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6.1 China’s alternative growth specification

In this section we test the sensitivity of our alternative growth series for China. We estimate three

additional alternative models to proxy for Chinese growth. The first alternative model we estimate

uses the series used in Fernald et al. (2021). The second alternative model we estimate uses the

series that market participants place the highest weight on according to Bloomberg. We include

this model to be even more agnostic about which series to use. The third alternative model we

estimate is the same as the benchmark model but exclude industrial production and retail sales as

these series are highly correlated with official real GDP.12 We use the same method to estimate

our alternative growth measure as we used for our preferred model. We first present results for the

different models estimated from 2000 on and then for 2012 on.

Figure 13 presents the model comparisons for the different DFMs estimated from 2000 on. The

chart highlights that all alternative models show a very similar pattern. All alternative series do not

pick up the variation in the real GDP growth in the period before the GFC. They do capture the

large drop in economic growth and subsequent recovery during the GFC episode. Interestingly, all

alternative series find a similar pattern in recent years. They all show a stronger downturn in the

2014-2015 ‘China scare’ episode and a stronger upturn in the subsequent stimulus period. All told,

we find that all models estimated from 2000 on show a similar patterns. Looking at the individual

weights the DFM places on each of the underlying series, we find that this similarity is in large part

driven by the relative large weight the DFM places on Chinese exports. However, as we documented

earlier, China’s economy has shifted from a production to a more consumption based economy in

recent years. Indeed, China’s dependence on exports has declined notably after the GFC.13 As such,

we compare all models when estimated from 2011 on.

Figure 14 presents the model comparisons for the different DFM estimated from 2011 on. Our

preferred model shows the same volatility we estimated from 2000 on in recent years. We find

a stronger downturn in the 2015 episode and a stronger upturn in the subsequent stimulus. In

contrast, the Fernald et al. (2020) model does not show the same volatility as our preferred model.

It shows a more muted 2015 downturn and subsequent upturn. Additionally, the model shows that

estimated growth has been more or less in line with official growth since 2018. Therefore, it does

not show the sharper-than-reported slowdown from the end of 2017 on our preferred model shows.

12See table A.1 in the appendix for the exact model specifications.
13Figure A.2 in the appendix plots Chinese gross and value added exports as a share of GDP. We highlight China’s

export dependence has declined since the GFC.
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Figure 13: Alternative versus Official Growth
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Note: Figure 13 plots China’s official real GDP in 4-quarter changes. It plots the 12-month changes for
several alternative Chinese GDP series estimated from 2000 to 2019: (1) our preffered model; (2) the Fernald
et al. (2021) model; (3) the Bloomberg model, (4) Bloomberg model with real data only, and (5) our preferred
model without industrial production (IP) and retail sales (RS).

Similar to the Fernald et al. (2020) model, the Bloomberg indicator model is less volatile compared

to our preferred model when estimated from 2011.

All told, the models overlap relatively well in the early period. However, from 2015 we see a

notable divergence where our model estimates a higher upturn and consecutive downturn compared

to the other models. The reason behind this divergence is the inclusion of the underlying series. the

majority of the data series in the Fernald et al. (2020) and Bloomberg real indicator model is tilted

towards the manufacturing sector, whereas our preferred model also includes numerous services

series. We find that the 2015 downturn was predominantly concentrated in the manufacturing sector,

which is why the downturns capture similar movements across models. In contrast, the 2017 upturn

was more concentrated in the services sector, which is not captured well by the other two models.

Therefore, our preferred model seems to better capture the more recent volatility in Chinese GDP.
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Figure 14: Model Comparison - Estimated from 2011 to 2019
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Note: Figure 14 plots China’s official real GDP in 4-quarter changes. It plots the 12-month changes for
several alternative Chinese GDP series estimated from 2011 to 2019: (1) our preffered model; (2) the Fernald
et al. (2021) model; (3) the Bloomberg model, (4) Bloomberg model with real data only, and (5) our preferred
model without industrial production (IP) and retail sales (RS).

6.2 VAR Specifications

In this subsection, we explore the sensitivity of our main results to different VAR specifications.

The different models are outlined in table 2.

6.2.1 Additional Chinese real GDP specifications

Chinese imports We first estimate a monthly VAR with the same variables as our main specifi-

cation, but use Chinese imports instead of our estimated alternative growth measure as Fernald et

al. (2021) argues that Chinese imports is correlated with Chinese GDP growth. However, given

data concerns regarding Chinese reported imports14, Fernald et al. (2021) use total foreign reported

exports to China and Hong Kong. We follow the same methodology and substitute our alternative

measure for Chinese official real GDP with Chinese imports. We estimate our model from 2012 to

2019. Similar to our main model, we identify a credit impulse shock through a recursive Cholesky

decomposition in a block exogeneity structure, where the credit impulse is ordered last. As such, an

exogenous credit impulse shock can affect China and the rest of the world with one-month lag.

14In particular, there are concerns regarding underreporting of Chinese imports
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Table 2: VAR Variables - Robustness

Variable name Source Model
(5) (6) (7)

China’s credit impulse Own calculation x x
Chinese imports Own calculation x
Chinese IP NBS x x
VIX Haver x x x
S&P500 index Haver x x x
Broad U.S. dollar BIS* x x x
2-year U.S. Treasury yield FRB x x x
Global domestic credit BIS* x x x
Global inflows to banks BIS* x x x
Global inflows to non-banks BIS* x x x
Commodity price index Haver x x x
Global Trade ex. China Haver, Own calculation x x x
Global IP ex. China Haver, Own calculation x x x
Global GDP ex. China NBS*, Own calculation x x x
Figures 2012-2019 15 16 17

Note: The top panel in table 2 lists the variables included in our robustness VAR model specifications. *
denotes monthly interpolation of the quarterly original variables using a piecewise cubic interpolation. The
bottom panel in table 2 describes the corresponding figures of each model estimation and for different time
spans.

The impulse response functions are show in figure 15. We find that a one standard deviation

shock to China’s credit impulse significantly increases Chinese imports, with the strongest effects

after 12 months and positive effects for about 24 months. We find the impulse response function

to be very similar to the one for our alternative Chinese growth measure as highlighted in 9. We

also find a lagged positive and significant effects on global industrial production outside of China

with the strongest effects after 18 months. As such, this result highlights more direct evidence of

the transmission channel. Indeed, the impulse response functions show that China’s credit policies

constitute an important driver of Chinese demand (imports) and consequently global industrial

production. We also find positive effects on commodity prices in the medium run. Finally, we also

find positive and significant effects on the global financial cycle again with a lag relative to the rise

in Chinese imports. All told, we find that the positive effects of an unexpected shock to China’s

credit impulse are transmitted to the rest of the world as higher Chinese demand boosts global

manufacturing. But the impulse responses also highlight that higher prospects for global growth

diminishes global risk aversion (U.S. broad real exchange rate) and leads to an easing of global

financial conditions.
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Figure 15: Economic responses to a 1% (of GDP) credit impulse shock with Chinese Imports (2012-2019)

Note: The lines in figure 15 are the estimated impulse responses to a 1 percent of Chinese GDP shock to
China’s credit impulse and correspond to the posterior median estimates. The unit of the vertical axis is the
percentage deviation from the situation without a shock. The responses originate from a VAR estimated from
January 2012 to December 2019. The grey shaded area represents the one standard deviation confidence
bands of the credit impulse shock obtained with 1,000 draws from the posterior distribution. See table 2 for
the VAR specification.

Chinese Industrial Production In section 5.4 we highlighted the importance of using our

alternative GDP measure in our VAR estimation. Indeed, we show that an unexpected shock to

China’s credit impulse does not positively affect China’s official real GDP, which is counter intuitive

and reflects the fact that smoothness issue with China’s real GDP. However, we interpolated China’s

real GDP from a quarterly to a monthly variable, which introduces some potential measurement

error. Therefore, to underscore the same point, and as a robustness check, we use Chinese industrial

production to proxy for real official Chinese GDP. As argued earlier, Chinese IP also exhibits this
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smoothness property in recent years.

Figure 16 presents the results. The impulse response functions show that an unexpected shock

to China’s credit impulse leads to a positive but economically small effect on Chinese industrial

production. Again, this result is counter intuitive as figure 16 also show that China’s credit polices

do have a positive and significant effect on global industrial production outside of China. Similarly,

we find positive and significant effect on commodity prices and the global financial cycle. Therefore,

these results are very similar to the previous results using China’s official real GDP. All told, we

find that using China’s industrial production in our VAR estimation masks the impact China’s

credit policies have on its own economy. Therefore, this again underscores the importance of using

an alternative growth measure.

6.2.2 Chinese demand shock specifications

Similar to the analysis in section 5.5 we assess the importance of using China’s credit impulse to

identify Chinese demand shocks in order to study China’s contribution to the global cycle. To do so,

we estimate a VAR where we use a one standard deviation shock to China’s industrial production,

similar to the analysis in figure 12, to estimate the spillovers to the rest of the world.

The results are presented in figure 17. The impulse response functions show that a one standard

deviation shock to Chinese IP does not significantly affect global industrial production outside of

China. Similarly, we find no significant effect on the global economic conditions index. Turning to

financial variables, we find no significant spillovers to commodity prices, the global financial cycle,

and global domestic credit. Moreover, we find that a shock to Chinese IP does not have a significant

impact on the U.S. dollar. All told, these result are very similar to those presented in figure 12

where China is estimated to have limited spillovers to the rest of the world. Again, this highlights

the issue with Chinese IP, which exhibits a similar smoothness property as official real GDP.
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Figure 16: Economic responses to a 1% (of GDP) credit impulse shock with Chinese IP (2012-2019)

Note: The lines in figure 16 are the estimated impulse responses to a 1 percent of Chinese GDP shock to
China’s credit impulse and correspond to the posterior median estimates. The unit of the vertical axis is the
percentage deviation from the situation without a shock. The responses originate from a VAR estimated from
January 2012 to December 2019. The grey shaded area represents the one standard deviation confidence
bands of the credit impulse shock obtained with 1,000 draws from the posterior distribution. See table 2 for
the VAR specification.
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Figure 17: Economic responses to a 1 std. dev. shock to China’s IP (2012-2019)

Note: The lines in figure 17 are the estimated impulse responses to a 1 standard deviation shock to China’s
official industrial production and correspond to the posterior median estimates. The unit of the vertical
axis is the percentage deviation from the situation without a shock. The responses originate from a VAR
estimated from January 2012 to December 2019. The grey shaded area represents the one standard deviation
confidence bands of the credit impulse shock obtained with 1,000 draws from the posterior distribution. See
table 2 for the VAR specification.
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7 Conclusion

China’s economy has grown rapidly over the past decades and has transformed the global landscape

with it. Whereas China represented a small fraction of global GDP and global trade in the 1990s,

it now accounts for 16 percent of world GDP and more than 30 percent of global growth. Yet,

China’s role as a major engine of global growth has been largely unexplored, potentially driven by

the observation that its official GDP is seemingly uncorrelated with the global cycle. In this paper,

we quantify the role of China’s economy in driving the global cycle. Specifically, we estimate the

impact of China’s credit policies on global economic activity, commodity prices and global financial

conditions. To do so, we first construct China’s credit impulse, which aggregates different credit

measures the Chinese authorities employ. Next, we construct an alternative growth series for China

that better captures the volatility of underlying Chinese economic activity. Finally, we estimate a

Structural Vector Autoregressive Model (VAR) to estimate the impact of movements in Chinese

economic activity induced by China’s domestic credit stimulus or tightening on economic activity in

the rest of the world. Our results show that China has become an important driver of the global

business and financial cycle since the Great Financial Crisis. Specifically, we find that China’s

expansionary credit policies lead to positive and significant increases in our alternative China’s

growth measure, commodity prices and global industrial production outside of China, highlighting

that China’s credit policies since have played an important role in supporting economic growth, not

only in China but also globally. Moreover, we show that China’s expansionary credit policies have a

positive and significant effect on the global financial cycle.
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A Appendix

A.1 China’s footprint in the global economy

Figure A.1: China’s footprint in the global economy
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Note: The left panel in figure A.1 plots the time series of nominal GDP as a share of global nominal GDP for
China, the United States, and the European Union. The right panel plots the contribution to global nominal
growth for each decade since 1990.
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A.2 Chinese growth has become less export dependent

Figure A.2: Export share of GDP (%)
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Note: The solid line in figure A.2 plots Chinese exports as a share of its nominal GDP. The dashed line plots
the value added in Chinese exports as a share of its nominal GDP.

Figure A.3: Value Added in Chinese Exports - Different sources (%)
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Note: Figure A.3 plot the time series of Chinese value added as a share of its total exports using different data
sources including the world input-output database from 2013 and 2016, the trade in value added database
from 2016 and 2018, and the EORA database.
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A.3 China’s credit impulse

Figure A.4: China’s credit impulse versus Total Social Financing (TSF) credit impulse (%)

Note: Figure A.4 plots China’s credit impulse based on total social financing (TSF) data and our preferred
measure for China’s credit impulse as the TSF measure adjusted for local and special local government bonds.
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A.4 China’s co-movement with the global cycle

Figure A.5: China’s economy and the global cycle
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Note: Panels (a) and (b) in figure A.5 plot real GDP growth in 4-quarter changes and industrial production
growth in 12-month changes, respectively, for China and the rest of the world. Panel (c) plots the rolling
5-year and 10-year correlation between real GDP growth of China and that of the rest of the world. Panel
(d) plots the rolling 5-year and 10-year correlation between industrial production growth of China and that of
the rest of the world.
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A.5 Decomposition of China’s official GDP - Demand side components

Figure A.6: China’s demand side shares of real GDP growth (%)
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Note: Figure A.6 plots the time series of the demand side components of China’s GDP, including final
consumption, gross capital formation and net exports of goods and services, as contributions to Chinese real
GDP growth.
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A.6 Model Specification and Comparison

Figure A.7 presents our preferred model alternative Chinese growth estimate and world excluding

China GDP growth.

Figure A.7: Alternative growth versus the global cycle
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Note: Figure A.7 plots our preferred alternative Chinese GDP measure and global GDP outside of China in
12-month changes.
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Table A.1: Model Specifications

Indicators Source Frequency Preferred Fernald Bloomberg
et al. (2020)

Industrial production CEIC month x x x
Retail sales CEIC month x x x
Fixed asset investment CEIC month x x
Fixed asset investment (manuf.) CEIC month x
Fixed asset investment (serv.) CEIC month x
Real estate investment CEIC month x x
Consumer expectation index CEIC month x x
Electricity consumption CEIC month x x
Electricity production CEIC month x
Chinese exports CEIC month x x x
Chinese imports CEIC month x
Chinese imports (foreign reported) Haver month x
Floor space started CEIC month x x
Floor space sold CEIC month x
Railway freight CEIC month x x
Cement production CEIC month x
Auto sales CEIC month x
Household items production CEIC month x
Copper import volume CEIC month x
Microcomputer production CEIC month x
Semiconductor production CEIC month x
Steel production CEIC month x
Ali Baba sales Ali Baba quarter x
Lenovo sales Lenovo quarter x
Tencent sales Tencent quarter x
Excavator sales CEIC month x
Copper import volume CEIC month x
Iron ore import volume CEIC month x
Caixin PMI (comp.) CEIC month x
Caixin PMI (manuf.) CEIC month x x
Caixin PMI (serv.) CEIC month x
Official PMI (comp.) CEIC month x
Official PMI (manuf.) CEIC month x
Official PMI (serv.) CEIC month x
Satellite Nightlights NOAA month x
Nitrogen Dioxide (NO2) TEMIS month x
Official GDP CEIC month x
Industrial profits CEIC month x x
Foreign direct investment CEIC month x
New home prices CEIC month x

TOTAL 31 8 16

Note: Table A.1 presents the underlying series that go into the DFM estimation of our preferred alternative
growth model specification and additional models specifications
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A.7 Additional VAR results

Figure A.8: Economic responses to a credit impulse shock (2001-2007)

Note: The lines in figure ?? are the estimated impulse responses to a 1 percent of Chinese GDP shock to
China’s credit impulse and correspond to the posterior median estimates. The unit of the vertical axis is the
percentage deviation from the situation without a shock. The responses originate from a VAR estimated from
January 2001 to December 2007. The grey shaded area represents the one standard deviation confidence
bands of the credit impulse shock obtained with 1,000 draws from the posterior distribution.
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